Status of AIRS RTA Development

Chris Hepplewhite, L. Larrabee Strow and Sergio DeSouza-Machado

Joint Center for Earth Systems Technology and UMBC Department of Physics

AIRS STM - Sept. 15, 2016

New Developments

- HITRAN 2012
- Version of kCARTA trained with LBLRTM
- Can support large sets of training/testing profiles
- New training code under development
- Will examine new parameterizations

Previous Work

- In-depth analysis of co-incident high-quality sondes
- Sondes indicated that HITRAN 2012 will improve some water lines by ~ 0.2-0.4K
- LBLRTM vs UMBC LBL line-mixing uncertain. CrlS TVAC indicates UMBC LBL better for 720 cm⁻¹ Q-branch, LBLRTM maybe better for 667 cm⁻¹ Q-branch
- LBLRTM Q-branch mixing is newer, so will use that first
- New MT-CKD water continuum fixes problems at 2400+ cm⁻¹ that we dealt with by tuning in early versions of SARTA
- Non-LTE might need a little tuning, will do once parameterization are finished
- Given JPL desire for improved short-wave, will examine (a) solar model, (b) solar ray-tracing for low solar angle polar scenes, and (c) any existing BRDF databases that may be useful (after parameterizations are done).

Code Base Issues

Existing F77 Code

 Huge attempt to run old F77 code written by Scott Hannon, provides a baseline.

Code Issues

- Too time consuming to modify (~100 F77 programs)
- Nearly done for CrIS FSR, but need to create new variable CO₂ approach (old approach not clearly documented).
- Way too time consuming, so I am writing a new, very simple MATLAB parameterization code: Pressure-layer done, working on OPTRAN layering for H₂O. Nearly 50X less code, very automated.
- New code base will allow for easy experimentation
- kCARTA + our cpu resources allow us to test SARTA on 25,000+ profiles. (Work already done.)

Present Plan

- Produce nominal new parameterizations for AIRS + CrIS (FSR) using old F77 code base
- Develop new (MATLAB) parameterization code using (nearly) the same algorithm as a baseline
- With new code, increase number/type of fitting profiles and possibly produce scene (latitude?) dependent coefficient sets
- Focus on polar areas, where we presently have problems with low water amounts and low solar angles (which are very hard to do).
- Fundamental quantity is layer-to-space transmittance, a 0-1 function that should be weighted by it's vertical derivative
- We think this approach is likely well suited for machine learning algorithms

Early AIRS Parameterization

CrIS FSR vs ECMWF in Mid-Wave

CrIS FSR Fitting Errors

CrIS FSR Independent Test: 705 Profiles

HNO₃ Signals in kCARTA vs SARTA

SARTA response to 10% change in HNO₃

Changes in New Approach (and Code) Preliminary

- Empirical weighting of OD's replaced with a physically based approach: Derivative of layer-to-space transmittance. Improves fitting accuracy.
- Automated selection of predictors out of a pool of possible ones. Lowers number of predictors a bit, but Scott did a very good job overall.
- Continuous testing with radiative transfer comparisons

Fit Diagnostics with New System

677 cm⁻¹ channel

Improvements with New Weighting	
Old Weighting	
Bias	0.0048K
RMS	0.0328K
New Weighting	
Bias	0.0024K
RMS	0.0275K

Conclusions

- Able to run old SARTA regression codes except:
 - Missing complete CO₂ recipe, working on fixes now
 - Apparently some bias issues, maybe with water continuum
 - Other minor gases working OK, but need some improvements to CH₄
- Plan to build acceptable RTA's using mostly existing code
- Re-build with new code base, improved weighting, etc.
- Explore better parameterizations with new code base (machine learning)
- If time, do regional testing and improvements, concentrating on polar scenes in the shortwave